| Texto completo | |
| Autor(es): |
Número total de Autores: 2
|
| Afiliação do(s) autor(es): | [1] Univ Fed Parana, Dept Informat, Ctr Politecn, BR-81531990 Curitiba, Parana - Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, SP - Brazil
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | ELECTRONIC JOURNAL OF COMBINATORICS; v. 9, 2002. |
| Citações Web of Science: | 1 |
| Resumo | |
We prove that for all l >= 3 and beta > 0 there exists a sparse oriented graph of arbitrarily large order with oriented girth l and such that any 1/2 + beta proportion of its arcs induces an oriented cycle of length l. As a corollary we get that there exist infinitely many oriented graphs with vanishing density of oriented girth l such that deleting any 1/l-fraction of their edges does not destroy all their oriented cycles. The proof is probabilistic. (AU) | |
| Processo FAPESP: | 96/04505-2 - Aspectos estruturais e algorítmicos de objetos combinatórios |
| Beneficiário: | Yoshiharu Kohayakawa |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |