Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On strategies for building effective ensembles of relative clustering validity criteria

Texto completo
Autor(es):
Jaskowiak, Pablo A. [1] ; Moulavi, Davoud [2] ; Furtado, Antonio C. S. [2] ; Campello, Ricardo J. G. B. [1] ; Zimek, Arthur [3] ; Sander, Joerg [2]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Comp Sci, Sao Carlos, SP - Brazil
[2] Univ Alberta, Dept Comp Sci, Edmonton, AB - Canada
[3] Univ Munich, Database Syst & Data Min Grp, Munich - Germany
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: KNOWLEDGE AND INFORMATION SYSTEMS; v. 47, n. 2, p. 329-354, MAY 2016.
Citações Web of Science: 8
Resumo

Evaluation and validation are essential tasks for achieving meaningful clustering results. Relative validity criteria are measures usually employed in practice to select and validate clustering solutions, as they enable the evaluation of single partitions and the comparison of partition pairs in relative terms based only on the data under analysis. There is a plethora of relative validity measures described in the clustering literature, thus making it difficult to choose an appropriate measure for a given application. One reason for such a variety is that no single measure can capture all different aspects of the clustering problem and, as such, each of them is prone to fail in particular application scenarios. In the present work, we take advantage of the diversity in relative validity measures from the clustering literature. Previous work showed that when randomly selecting different relative validity criteria for an ensemble (from an initial set of 28 different measures), one can expect with great certainty to only improve results over the worst criterion included in the ensemble. In this paper, we propose a method for selecting measures with minimum effectiveness and some degree of complementarity (from the same set of 28 measures) into ensembles, which show superior performance when compared to any single ensemble member (and not just the worst one) over a variety of different datasets. One can also expect greater stability in terms of evaluation over different datasets, even when considering different ensemble strategies. Our results are based on more than a thousand datasets, synthetic and real, from different sources. (AU)

Processo FAPESP: 12/15751-9 - Seleção de genes e outliers em dados de microarray
Beneficiário:Pablo Andretta Jaskowiak
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 10/20032-6 - Estudo e desenvolvimento de métodos de validação para técnicas de agrupamento de dados baseadas em densidade e em grafos
Beneficiário:Ricardo José Gabrielli Barreto Campello
Modalidade de apoio: Bolsas no Exterior - Pesquisa
Processo FAPESP: 11/04247-5 - Seleção de Genes e Validação de Agrupamento em Dados de Expressão Gênica
Beneficiário:Pablo Andretta Jaskowiak
Modalidade de apoio: Bolsas no Brasil - Doutorado