Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

STRICTLY POSITIVE DEFINITE KERNELS ON COMPACT TWO-POINT HOMOGENEOUS SPACES

Texto completo
Autor(es):
Barbosa, V. S. [1] ; Menegatto, V. A. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] ICMC USP Sao Carlos, Dept Matemat, Caixa Postal 668, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Mathematical Inequalities & Applications; v. 19, n. 2, p. 743-756, APR 2016.
Citações Web of Science: 14
Resumo

We present a necessary and sufficient condition for the strict positive definiteness of a real, continuous, isotropic and positive definite kernel on a compact two-point homogeneous space. The characterization is achieved using special limit formulas for Jacobi polynomials and antipodal manifolds attached to points in the homogeneous spaces. The characterization recovers that one presented in D. Chen et al. (2003) in the case in which the space is a sphere of dimension at least 2, adds to that in Menegatto et al. (2006) in the case in which the space is the unit circle and that in Beatson and zu Castell (2011) in the case of a real projective space. As an application, we use the characterization to improve upon a recent result on the differentiability of positive definite kernels on the spaces. (AU)

Processo FAPESP: 14/00277-5 - Núcleos positivos definidos e operadores integrais associados
Beneficiário:Valdir Antonio Menegatto
Modalidade de apoio: Auxílio à Pesquisa - Regular