Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Hyperspectral data classification improved by minimum spanning forests

Texto completo
Autor(es):
da Silva, Ricardo Dutra [1] ; Pedrini, Helio [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Fed Univ Technol, Dept Informat, Av Sete Setembro 3165, BR-80230901 Curitiba, Parana - Brazil
[2] Univ Estadual Campinas, Inst Comp, Av Albert Einstein 1251, BR-13083852 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF APPLIED REMOTE SENSING; v. 10, APR 26 2016.
Citações Web of Science: 2
Resumo

Remote sensing technology has applications in various knowledge domains, such as agriculture, meteorology, land use, environmental monitoring, military surveillance, and mineral exploration. The increasing advances in image acquisition techniques have allowed the generation of large volumes of data at high spectral resolution with several spectral bands representing images collected simultaneously. We propose and evaluate a supervised classification method composed of three stages. Initially, hyperspectral values and entropy information are employed by support vector machines to produce an initial classification. Then, the K-nearest neighbor technique searches for pixels with high probability of being correctly classified. Finally, minimum spanning forests are applied to these pixels to reclassify the image taking spatial restrictions into consideration. Experiments on several hyperspectral images are conducted to show the effectiveness of the proposed method. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) (AU)

Processo FAPESP: 11/22749-8 - Desafios em visualização exploratória de dados multidimensionais: novos paradigmas, escalabilidade e aplicações
Beneficiário:Luis Gustavo Nonato
Linha de fomento: Auxílio à Pesquisa - Temático