Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Sensing hydrocarbons with interband cascade lasers and substrate-integrated hollow waveguides

Texto completo
Autor(es):
Gomes da Silva, Igor Jose [1, 2] ; Tuetuencue, Erhan [1] ; Naegele, Markus [3] ; Fuchs, Peter [4] ; Fischer, Marc [4] ; Raimundo, Jr., Ivo M. [2] ; Mizaikoff, Boris [1]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Ulm, Inst Analyt & Bioanalyt Chem, D-89081 Ulm - Germany
[2] State Univ Campinas UNICAMP, Inst Chem, BR-13083970 Campinas, SP - Brazil
[3] OptoPrecis GmbH, D-28357 Bremen - Germany
[4] Nanoplus GmbH, D-97218 Gerbrunn - Germany
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: ANALYST; v. 141, n. 14, p. 4432-4437, 2016.
Citações Web of Science: 9
Resumo

Tunable diode laser absorption spectroscopy (TDLAS) is an excellent analytical technique for gas sensing applications. In situ sensing of relevant hydrocarbon gases is of substantial interest for a variety of in-field scenarios including environmental monitoring and process analysis, ideally providing accurate, molecule specific, and rapid information with minimal sampling requirements. Substrate-integrated hollow waveguides (iHWGs) have demonstrated superior properties for gas sensing applications owing to minimal sample volumes required while simultaneously serving as efficient photon conduits. Interband cascade lasers (ICLs) are recently emerging as mid-infrared light sources operating at room temperature, with low power consumption, and providing excellent potential for integration. Thereby, portable and handheld mid-infrared sensing devices are facilitated. Methane (CH4) is among the most frequently occurring, and thus, highly relevant hydrocarbons requiring in situ emission monitoring by taking advantage of its distinct molecular absorption around 3 mu m. Here, an efficient combination of iHWGs with ICLs is presented providing a methane sensor calibrated in the range of 100 to 2000 ppm(v) with a limit of detection at 38 ppmv at the current stage of development. Furthermore, a measurement precision of 0.62 ppb(v) during only 1 s of averaging time has been demonstrated, thereby rendering this sensor concept useful for in-line and on-site emission monitoring and process control applications. (AU)

Processo FAPESP: 08/57808-1 - Instituto Nacional de Ciências e Tecnologias Analíticas Avançadas - INCTAA
Beneficiário:Celio Pasquini
Modalidade de apoio: Auxílio à Pesquisa - Temático