Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Short text opinion detection using ensemble of classifiers and semantic indexing

Texto completo
Autor(es):
Lochter, Johannes V. ; Zanetti, Rafael F. ; Reller, Dominik ; Almeida, Tiago A.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 62, p. 243-249, NOV 15 2016.
Citações Web of Science: 10
Resumo

The popularity of social networks has attracted attention of companies. The growing amount of connected users and messages posted per day make these environments fruitful to detect needs, tendencies, opinions, and other interesting information that can feed marketing and sales departments. However, the most social networks impose size limit to messages, which lead users to compact them by using abbreviations, slangs, and symbols. As a consequence, these problems impact the sample representation and degrade the classification performance. In this way, we have proposed an ensemble system to find the best way to combine the state-of-the-art text processing approaches, as text normalization and semantic indexing techniques, with traditional classification methods to automatically detect opinion in short text messages. Our experiments were diligently designed to ensure statistically sound results, which indicate that the proposed system has achieved a performance higher than the individual established classifiers. (C) 2016 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 14/01237-7 - Análise de sentimento de mensagens de texto via comitê de máquinas de classificação
Beneficiário:Tiago Agostinho de Almeida
Modalidade de apoio: Auxílio à Pesquisa - Regular