Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces

Texto completo
Autor(es):
Mostrar menos -
Vieira Marques, Isabella da Silva ; Alfaro, Maria Fernanda ; Saito, Miki Taketomi ; da Cruz, Nilson Cristino ; Takoudis, Christos ; Landers, Richard ; Mesquita, Marcelo Ferraz ; Nociti Junior, Francisco Humberto ; Mathew, Mathew T. ; Sukotjo, Cortino ; Ricardo Barao, Valentim Adelino
Número total de Autores: 11
Tipo de documento: Artigo Científico
Fonte: BIOINTERPHASES; v. 11, n. 3 SEP 2016.
Citações Web of Science: 2
Resumo

Biofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were ( 1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation ( MAO) to improve the surface properties of biomedical implants, ( 2) to investigate the TiO2 layer stability under wear and corrosion, and ( 3) to evaluate human mesenchymal stem cells ( hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group ( p<0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops ( 0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops ( 0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces. (C) 2016 American Vacuum Society. (AU)

Processo FAPESP: 13/08451-1 - Estabilidade eletroquímica do Ticp com superfícies modificadas por ácido e jateamento com óxido de alumínio
Beneficiário:Valentim Adelino Ricardo Barão
Modalidade de apoio: Auxílio à Pesquisa - Regular