Graduações regulares de dimensão infinita e graduações regulares que são homogene...
Mikhail Vladimirovich Zaicev | Moscow State University - Rússia
Vesselin Stoyanov Drensky | Institute of Mathematics Bulgarian Academy of Sciences...
Texto completo | |
Autor(es): |
Brandao, Jr., Antonio Pereira
;
Goncalves, Dimas Jose
;
Koshlukov, Plamen
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION; v. 26, n. 8, p. 1617-1631, DEC 2016. |
Citações Web of Science: | 0 |
Resumo | |
Let F be a field of characteristic 0 and let R = M-2(F). The algebra R admits a natural grading R = R-0 circle plus R-1 by the cyclic group Z(2) of order 2. In this paper, we describe the Z(2)-graded A-identities for R. Recall that an A-identity for an algebra is a multilinear polynomial identity for that algebra which is a linear combination of the monomials x(sigma)(1) . . . x(sigma)(n) where sigma runs over all even permutations of [1,..., n] that is sigma is an element of A(n), the nth alternating group. We first introduce the notion of an A-identity in the case of graded polynomials, then we describe the graded A-identities for R, and finally we compute the corresponding graded A-codimensions. (AU) | |
Processo FAPESP: | 14/09310-5 - Estruturas algébricas e suas representações |
Beneficiário: | Vyacheslav Futorny |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |