Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Batch pervaporative fermentation with coupled membrane and its influence on energy consumption in permeate recovery and distillation stage

Texto completo
Autor(es):
Leon, Juan A. ; Palacios-Bereche, Reynaldo ; Nebra, Silvia A.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: ENERGY; v. 109, p. 77-91, AUG 15 2016.
Citações Web of Science: 4
Resumo

In the ethanol production process from sugarcane molasses, the distillation process is a high-energy demand stage. The distillation energy efficiency is strongly associated with the alcoholic fermentation performance in the process. The final ethanol concentration in the alcoholic wines has a direct impact on consumption of thermal energy in ethanol separation. In this paper, ethanol production with a H-SBMF (Hybrid-Simple Batch Membrane Fermenter) using PDMS (polydimethylsiloxane) pervaporation membrane was modelled and simulated, in order to determine its influence on energy consumption in distillation. Steam in distillation and electrical energy needs in permeate recovery were mainly influenced by membrane adaptation. The H-SBMF achieved a higher ethanol production in the range of 10 -13% compared to the conventional batch fermenter, and an increase in productivity of 150%. The distillation system consisted of two sets of columns: the ethanol recovery column and the rectification column. The permeate recovery system (i.e. vacuum and compression) was regarded in order to evaluate the electrical energy requirement, and the thermal energy demand was evaluated. A decrease in steam consumption was evidenced by the adaptation of the membrane to the fermenter. Higher energy efficiencies were achieved in distillation with larger membrane areas, achieving almost 17% steam reduction. (C) 2016 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 11/51902-9 - Simulação da biorrefinaria de cana-de-açúcar de 1ª. geração na plataforma EMSO
Beneficiário:Antonio Maria Francisco Luiz Jose Bonomi
Modalidade de apoio: Auxílio à Pesquisa - Programa BIOEN - Temático