O problema da interseção de caminhos mais longos em classes de grafos
Ortogonalidade entre empacotamento de caminhos e partições em conjuntos independen...
(Bio)marcadores de envelhecimento na produção em gerontologia: entre a resposta gl...
Texto completo | |
Autor(es): |
Chen, Guantao
;
Ehrenmuller, Julia
;
Fernandes, Cristina G.
;
Heise, Carl Georg
;
Shan, Songling
;
Yang, Ping
;
Yates, Amy N.
Número total de Autores: 7
|
Tipo de documento: | Artigo Científico |
Fonte: | DISCRETE MATHEMATICS; v. 340, n. 3, p. 287-304, MAR 2017. |
Citações Web of Science: | 6 |
Resumo | |
In 1966 Gallai asked whether all longest paths in a connected graph have nonempty intersection. This is not true in general and various counterexamples have been found. However, the answer to Gallai's question is positive for several well-known classes of graphs, as for instance connected outerplanar graphs, connected split graphs, and 2-trees. A graph is series-parallel if it does not contain K-4 as a minor. Series-parallel graphs are also known as partial 2-trees, which are arbitrary subgraphs of 2-trees. We present two independent proofs that every connected series-parallel graph has a vertex that is common to all of its longest paths. Since 2-trees are maximal series-parallel graphs, and outerplanar graphs are also series-parallel, our result captures these two classes in one proof and strengthens them to a larger class of graphs. We also describe how one such vertex can be found in linear time. (C) 2016 Elsevier B.V. All rights reserved. (AU) | |
Processo FAPESP: | 13/03447-6 - Estruturas combinatórias, otimização e algoritmos em Teoria da Computação |
Beneficiário: | Carlos Eduardo Ferreira |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |