Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

From spreadsheets to sugar content modeling: A data mining approach

Texto completo
Autor(es):
Gravina de Oliveira, Monique Pires ; Bocca, Felipe Ferreira ; Antunes Rodrigues, Luiz Henrique
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: COMPUTERS AND ELECTRONICS IN AGRICULTURE; v. 132, p. 14-20, JAN 2017.
Citações Web of Science: 6
Resumo

Sugarcane mills need sugar content estimates in advance to establish their commercial strategy. To obtain these estimates, mills rely on historical averages or maturation curves. Crop models have also been developed to provide those estimates. Leveraging mill data about fields and sugar content at harvest, we developed empirical models using different data Mining techniques along with the RReliefF algorithm for feature selection. The best model was attained with Random Forest with features selected by RReliefF, having a mean absolute error of 2.02 kg Mg-1. This model outperformed Support Vector Regression And Regression Trees with and without feature selection. Models were also evaluated by the Regression Error Characteristic Curves, which showed that the best model was able to predict 90% of the observations within a precision of 5.40 kg Mg-1. (C) 2016 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 12/50049-3 - Técnicas de mineração de dados aplicadas a análise e previsão da produtividade da cana-de-açúcar
Beneficiário:Luiz Henrique Antunes Rodrigues
Modalidade de apoio: Auxílio à Pesquisa - Programa BIOEN - PITE