Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Tight cycles and regular slices in dense hypergraphs

Texto completo
Autor(es):
Allen, Peter ; Bottcher, Julia ; Cooley, Oliver ; Mycroft, Richard
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF COMBINATORIAL THEORY SERIES A; v. 149, p. 30-100, JUL 2017.
Citações Web of Science: 3
Resumo

We study properties of random subcomplexes of partitions returned by (a suitable form of) the Strong Hypergraph Regularity Lemma, which we call regular slices. We argue that these subcomplexes capture many important structural properties of the original hypergraph. Accordingly we advocate their use in extremal hypergraph theory, and explain how they can lead to considerable simplifications in existing proofs in this field. We also use them for establishing the following two new results. Firstly, we prove a hypergraph extension of the Erdos-Gallai Theorem: for every delta > 0 every sufficiently large k-uniform hypergraph with at least (alpha + delta)((eta)(kappa)) edges contains a tight cycle of length alpha eta for each alpha epsilon {[}0,1]. Secondly, we find (asymptotically) the minimum codegree requirement for a k-uniform k-partite hypergraph, each of whose parts has eta vertices, to contain a tight cycle of length alpha kappa eta, for each 0 < alpha < 1. (C) 2017 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 10/09555-7 - Problemas estruturais, probabilísticos e de imersão em teoria extremal dos grafos
Beneficiário:Peter David Allen
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 09/17831-7 - Problemas de imersão e empacotamento em teoria extremal dos grafos
Beneficiário:Julia Boettcher
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado