Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

The stability of extended Floater-Hormann interpolants

Texto completo
Autor(es):
de Camargo, Andre Pierro ; Mascarenhas, Walter F.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: NUMERISCHE MATHEMATIK; v. 136, n. 1, p. 287-313, MAY 2017.
Citações Web of Science: 1
Resumo

We present a new analysis of the stability of extended Floater-Hormann interpolants, in which both noisy data and rounding errors are considered. Contrary to what is claimed in the current literature, we show that the Lebesgue constant of these interpolants can grow exponentially with the parameters that define them, and we emphasize the importance of using the proper interpretation of the Lebesgue constant in order to estimate correctly the effects of noise and rounding errors. We also present a simple condition that implies the backward instability of the barycentric formula used to implement extended interpolants. Our experiments show that extended interpolants mentioned in the literature satisfy this condition and, therefore, the formula used to implement them is not backward stable. Finally, we explain that the extrapolation step is a significant source of numerical instability for extended interpolants based on extrapolation. (AU)

Processo FAPESP: 13/10916-2 - Computação numérica em C++11
Beneficiário:Walter Figueiredo Mascarenhas
Modalidade de apoio: Auxílio à Pesquisa - Regular