Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

An Ensemble-Based Stacked Sequential Learning Algorithm for Remote Sensing Imagery Classification

Texto completo
Autor(es):
Pereira, Danillo R. ; Pisani, Rodrigo J. ; de Souza, Andre N. ; Papa, Joao P.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING; v. 10, n. 4, p. 1525-1541, APR 2017.
Citações Web of Science: 0
Resumo

Contextual-based image classification attempts at considering spatial/temporal information during the learning process in order to make the classification process smarter. Sequential learning techniques are one of the most used ones to perform contextual classification, being based on a two-step classification process, in which the traditional noncontextual learning process is followed by one more step of classification based on an extended feature vector. In this paper, we propose two ensemble-based approaches to make sequential learning techniques less prone to errors, since their effectiveness is strongly dependent on the feature extension process, which ends up adding the wrong predicted label of the neighborhood samples as new features. The proposed approaches are validated in the context of land-cover classification, being their results considerably better than some state-of-the-art techniques in the literature. (AU)

Processo FAPESP: 14/16250-9 - Sobre a otimização de parâmetros em técnicas de aprendizado de máquina: avanços e paradigmas
Beneficiário:João Paulo Papa
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/20387-7 - Otimização de hiperparâmetros em arquiteturas de aprendizado em profundidade
Beneficiário:João Paulo Papa
Linha de fomento: Bolsas no Exterior - Pesquisa
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Linha de fomento: Auxílio à Pesquisa - Temático