Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Experimental phase synchronization detection in non-phase coherent chaotic systems by using the discrete complex wavelet approach

Texto completo
Autor(es):
Ferreira, Maria Teodora ; Follmann, Rosangela ; Domingues, Margarete O. ; Macau, Elbert E. N. ; Kiss, Istvan Z.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: Chaos; v. 27, n. 8 AUG 2017.
Citações Web of Science: 1
Resumo

Phase synchronization may emerge from mutually interacting non-linear oscillators, even under weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated. However, the detection of this phenomenon can be a challenging problem to tackle. In this work, we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering signals from coupled chaotic systems and experimental data. The DCWA is based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is a discrete transformation. Due to its multi-scale properties in the context of phase characterization, it is possible to obtain very good results from scalar time series, even with non-phase-coherent chaotic systems without state space reconstruction or pre-processing. The method correctly predicts the phase synchronization for a chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact of different time-scales is demonstrated on the synchronization process that outlines the advantages of DCWA for analysis of experimental data. Published by AIP Publishing. (AU)

Processo FAPESP: 15/25624-2 - Desenvolvimento de modelagem multiescala para instabilidades locais não-lineares em Astrofísica e Geofísica Espacial
Beneficiário:Margarete Oliveira Domingues
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/50122-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações
Beneficiário:Elbert Einstein Nehrer Macau
Modalidade de apoio: Auxílio à Pesquisa - Temático