Uso de Modelos de Sobrevivência na Modelagem de Crédito Escore
Desenvolvimentos computacionais e teóricos baseados em métodos ab initio e na Teor...
Movimento quântico de uma carga em campos eletromagnéticos na representação de pro...
Texto completo | |
Autor(es): |
Faustino, N.
Número total de Autores: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | Applied Mathematics and Computation; v. 315, p. 531-548, DEC 15 2017. |
Citações Web of Science: | 0 |
Resumo | |
We present and study a new class of Fock states underlying to discrete electromagnetic Schrodinger operators from a multivector calculus perspective. This naturally lead to hypercomplex versions of Poisson-Charlier polynomials, Meixner polynomials, among other ones. The foundations of this work are based on the exploitation of the quantum probability formulation a la Dirac' to the setting of Bayesian probabilities, on which the Fock states arise as discrete quasi-probability distributions carrying a set of independent and identically distributed (i.i.d) random variables. By employing Mellin-Barnes integrals in the complex plane we obtain counterparts for the well-known multidimensional Poisson and hypergeometric distributions, as well as quasi-probability distributions that may take negative or complex values on the lattice hZ(n). (C) 2017 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 13/07590-8 - Aplicações de Cálculo de Clifford discreto em teorias de campos quânticos |
Beneficiário: | Nelson José Rodrigues Faustino |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |