Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Hypercomplex Fock states for discrete electromagnetic Schrodinger operators: A Bayesian probability perspective

Texto completo
Autor(es):
Faustino, N.
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: Applied Mathematics and Computation; v. 315, p. 531-548, DEC 15 2017.
Citações Web of Science: 0
Resumo

We present and study a new class of Fock states underlying to discrete electromagnetic Schrodinger operators from a multivector calculus perspective. This naturally lead to hypercomplex versions of Poisson-Charlier polynomials, Meixner polynomials, among other ones. The foundations of this work are based on the exploitation of the quantum probability formulation a la Dirac' to the setting of Bayesian probabilities, on which the Fock states arise as discrete quasi-probability distributions carrying a set of independent and identically distributed (i.i.d) random variables. By employing Mellin-Barnes integrals in the complex plane we obtain counterparts for the well-known multidimensional Poisson and hypergeometric distributions, as well as quasi-probability distributions that may take negative or complex values on the lattice hZ(n). (C) 2017 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 13/07590-8 - Aplicações de Cálculo de Clifford discreto em teorias de campos quânticos
Beneficiário:Nelson José Rodrigues Faustino
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado