Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Comparison of high order finite element and discontinuous Galerkin methods for phase field equations: Application to structural damage

Texto completo
Autor(es):
Chiarelli, L. R. [1] ; Fumes, F. G. [1] ; Barros de Moraes, E. A. [1] ; Haveroth, G. A. [2] ; Boldrini, J. L. [2] ; Bittencourt, M. L. [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Dept Integrated Syst, Sch Mech Engn, BR-13083970 Campinas, SP - Brazil
[2] Univ Estadual Campinas, Dept Math, Inst Math Stat & Sci Comp, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: COMPUTERS & MATHEMATICS WITH APPLICATIONS; v. 74, n. 7, p. 1542-1564, OCT 1 2017.
Citações Web of Science: 2
Resumo

Phase field equations are used to model a wide range of multiphase problems such as separation of fluids, solidification, viscous fingering, fracture and fatigue. A wide variety of methods to numerically solve phase field equations can be found in the literature. In particular, high order methods are an effective option when accuracy improvement is desired. In the first part of this work, we analyze the accuracy and computational efficiency of the high order finite element method (FEM) and discontinuous Galerkin (DG) method applied to the second-order Allen-Cahn (AC) and fourth-order Cahn-Hilliard (CH) equations. Several schemes for time integration are used for these equations. The explicit schemes are the forward Euler, classical fourth-order Runge-Kutta (RK4) and the strong stability preserving ten stages fourth-order Runge-Kutta (RKSSP-10,4) described in Gottlieb et al. (2011). The backward Euler and trapezoidal implicit methods are adopted in the full and semi implicit schemes, as proposed in Eyre (unpublished). Manufactured solutions for one dimensional problems are used in order to evaluate the errors and to compare the different numerical methods. By choosing an adequate discretization for AC equations resulting from the previous analysis of the first part of the work, in the second part, we propose a numerical semi implicit scheme to solve the damage and fracture model described in Boldrini et al. (2016). This procedure employs the FEM for spatial discretization, the Newmark method for time integration of the kinematics equation and the backward Euler for the damage phase field evolution. Finally, results for 2D benchmark tests are presented for the fracture phase field model and the convergence to a sharp crack for a small width of the damage phase field layer gamma is verified. (C) 2017 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 15/20188-0 - Utilização dos modelos de campos de fase para problemas envolvendo fraturas, plasticidade e grandes deformações
Beneficiário:Geovane Augusto Haveroth
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 15/10310-2 - Análise de fadiga numérica e experimental de virabrequins leves
Beneficiário:Eduardo Augusto Barros de Moraes
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 13/50238-3 - Estudo conceitual de um motor avançado a etanol
Beneficiário:Francisco Emílio Baccaro Nigro
Modalidade de apoio: Auxílio à Pesquisa - Programa BIOEN - Centros de Pesquisa em Engenharia