Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks

Texto completo
Autor(es):
Pena, Rodrigo F. O. [1] ; Vellmer, Sebastian [2, 3] ; Bernardi, Davide [2, 3] ; Roque, Antonio C. [1] ; Lindner, Benjamin [2, 3]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sch Philosophy Sci & Letters Ribeirao Preto, Dept Phys, Lab Sistemas Neurais, Sao Paulo - Brazil
[2] Humboldt Univ, Dept Phys, Berlin - Germany
[3] Bernstein Ctr Computat Neurosci, Theory Complex Syst & Neurophys, Berlin - Germany
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: FRONTIERS IN COMPUTATIONAL NEUROSCIENCE; v. 12, MAR 2 2018.
Citações Web of Science: 3
Resumo

Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in their spike trains that can be quantified by the autocorrelation function or the spike-train power spectrum. Depending on cellular and network parameters, correlations display diverse patterns (ranging from simple refractory-period effects and stochastic oscillations to slow fluctuations) and it is generally not well-understood how these dependencies come about. Previous work has explored how the single-cell correlations in a homogeneous network (excitatory and inhibitory integrate-and-fire neurons with nearly balanced mean recurrent input) can be determined numerically from an iterative single-neuron simulation. Such a scheme is based on the fact that every neuron is driven by the network noise (i.e., the input currents from all its presynaptic partners) but also contributes to the network noise, leading to a self-consistency condition for the input and output spectra. Here we first extend this scheme to homogeneous networks with strong recurrent inhibition and a synaptic filter, in which instabilities of the previous scheme are avoided by an averaging procedure. We then extend the scheme to heterogeneous networks in which (i) different neural subpopulations (e.g., excitatory and inhibitory neurons) have different cellular or connectivity parameters; (ii) the number and strength of the input connections are random (Erdos-Renyi topology) and thus different among neurons. In all heterogeneous cases, neurons are lumped in different classes each of which is represented by a single neuron in the iterative scheme; in addition, we make a Gaussian approximation of the input current to the neuron. These approximations seem to be justified over a broad range of parameters as indicated by comparison with simulation results of large recurrent networks. Our method can help to elucidate how network heterogeneity shapes the asynchronous state in recurrent neural networks. (AU)

Processo FAPESP: 13/25667-8 - Mecanismos de propagação de atividade epileptiforme em um modelo cortical de grande porte
Beneficiário:Rodrigo Felipe de Oliveira Pena
Linha de fomento: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 15/50122-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações
Beneficiário:Elbert Einstein Nehrer Macau
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/07699-0 - Centro de Pesquisa, Inovação e Difusão em Neuromatemática - NeuroMat
Beneficiário:Jefferson Antonio Galves
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs