Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

L1-Minimization Algorithm for Bayesian Online Compressed Sensing

Texto completo
Autor(es):
Rossi, Paulo V. [1, 2] ; Vicente, Renato [1, 3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Latam Experian DataLab, BR-04547130 Sao Paulo, SP - Brazil
[2] Univ Sao Paulo, Inst Phys, Dept Gen Phys, BR-05508090 Sao Paulo, SP - Brazil
[3] Univ Sao Paulo, Inst Math & Stat, Dept Appl Math, BR-05508090 Sao Paulo, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Entropy; v. 19, n. 12 DEC 2017.
Citações Web of Science: 3
Resumo

In this work, we propose a Bayesian online reconstruction algorithm for sparse signals based on Compressed Sensing and inspired by L1-regularization schemes. A previous work has introduced a mean-field approximation for the Bayesian online algorithm and has shown that it is possible to saturate the offline performance in the presence of Gaussian measurement noise when the signal generating distribution is known. Here, we build on these results and show that reconstruction is possible even if prior knowledge about the generation of the signal is limited, by introduction of a Laplace prior and of an extra Kullback-Leibler divergence minimization step for hyper-parameter learning. (AU)

Processo FAPESP: 14/00792-7 - Mecânica estatística aplicada à compressed sensing
Beneficiário:Paulo Victor Camargo Rossi
Modalidade de apoio: Bolsas no Brasil - Doutorado