Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials

Texto completo
Autor(es):
Mostrar menos -
das Gracas Dias, Kaio Olimpio [1, 2] ; Gezan, Salvador Alejandro [3] ; Guimaraes, Claudia Teixeira [4] ; Nazarian, Alireza [3] ; da Costa e Silva, Luciano [5] ; Parentoni, Sidney Netto [4] ; de Oliveira Guimaraes, Paulo Evaristo [4] ; Anoni, Carina de Oliveira [1] ; Villela Padua, Jose Maria [2] ; Pinto, Marcos de Oliveira [4] ; Noda, Roberto Willians [4] ; Gomes Ribeiro, Carlos Alexandre [6] ; de Magalhaes, Jurandir Vieira [4] ; Franco Garcia, Antonio Augusto [1] ; de Souza, Joao Candido [2] ; Moreira Guimaraes, Lauro Jose [4] ; Pastina, Maria Marta [4]
Número total de Autores: 17
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Escola Super Agr Luiz de Queiroz, Dept Genet, Piracicaba, SP - Brazil
[2] Univ Fed Lavras, Dept Biol, Lavras, MG - Brazil
[3] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 - USA
[4] Embrapa Milho & Sorgo, Sete Lagoas, MG - Brazil
[5] SAS Inst Inc, JMP Div, Cary, NC - USA
[6] Univ Fed Vicosa, Dept Biol Geral, Vicosa, MG - Brazil
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: HEREDITY; v. 121, n. 1, p. 24-37, JUL 2018.
Citações Web of Science: 5
Resumo

Breeding for drought tolerance is a challenging task that requires costly, extensive, and precise phenotyping. Genomic selection (GS) can be used to maximize selection efficiency and the genetic gains in maize (Zea mays L.) breeding programs for drought tolerance. Here, we evaluated the accuracy of genomic selection (GS) using additive (A) and additive + dominance (AD) models to predict the performance of untested maize single-cross hybrids for drought tolerance in multi-environment trials. Phenotypic data of five drought tolerance traits were measured in 308 hybrids along eight trials under water-stressed (WS) and well-watered (WW) conditions over two years and two locations in Brazil. Hybrids' genotypes were inferred based on their parents' genotypes (inbred lines) using single-nucleotide polymorphism markers obtained via genotyping-by-sequencing. GS analyses were performed using genomic best linear unbiased prediction by fitting a factor analytic (FA) multiplicative mixed model. Two cross-validation (CV) schemes were tested: CV1 and CV2. The FA framework allowed for investigating the stability of additive and dominance effects across environments, as well as the additive-by-environment and the dominance-by-environment interactions, with interesting applications for parental and hybrid selection. Results showed differences in the predictive accuracy between A and AD models, using both CV1 and CV2, for the five traits in both water conditions. For grain yield (GY) under WS and using CV1, the AD model doubled the predictive accuracy in comparison to the A model. Through CV2, GS models benefit from borrowing information of correlated trials, resulting in an increase of 40% and 9% in the predictive accuracy of GY under WS for A and AD models, respectively. These results highlight the importance of multi-environment trial analyses using GS models that incorporate additive and dominance effects for genomic predictions of GY under drought in maize single-cross hybrids. (AU)

Processo FAPESP: 16/12977-7 - Implementação de seleção genômica em milho por meio de modelo genético-estatístico que integra efeitos da interação genótipos por ambientes e efeitos genéticos aditivos e não aditivos
Beneficiário:Kaio Olimpio das Graças Dias
Linha de fomento: Bolsas no Brasil - Pós-Doutorado