| Texto completo | |
| Autor(es): |
Número total de Autores: 4
|
| Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Dept Quim, Fac Filosofia Ciencias & Letras Ribeirao Preto, BR-14040901 Ribeirao Preto, SP - Brazil
[2] Univ Paris 11, Lab Phys Solides, CNRS UMR 8502, F-91405 Orsay - France
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Crystal Growth & Design; v. 18, n. 5, p. 2932-2940, MAY 2018. |
| Citações Web of Science: | 5 |
| Resumo | |
Strontium is a natural trace element found in biominerals such as aragonitic coral skeletons and bone apatite. Sr2+ substitution in biomaterials has been found to regulate the cellular metabolism, thus enhancing bone healing. Even though Ca2+ substitution for Sr2+ has been described in many phosphate minerals, the impact of such substitution on bioactivity and structure in pure carbonate phases has not been explored. Therefore, here we used a biomimetic approach to synthesize carbonate particles with a controlled size in which Ca2+ was progressively substituted for Sr2(+). Through structural investigation by X-ray diffraction, Raman spectroscopy, and electron microscopy techniques including high-resolution transmission electron microscopy and electron diffraction, we studied the precipitation mechanism of Sr-substituted CaCO3 nanorods showing that increasing Sr (2+)/(Ca2+ + Sr2+) molar fractions lead to stabilization of strontianite, a mineral from the aragonite group, increasing the carbonate crystalline lattice and particle crystallinity. The in vitro bioactivity evaluation attested that the particles bioactivity is maintained even at high Sr2+ concentrations. These outcomes are fundamental for proper evaluation of the role Sr2+ plays in carbonate based biomaterials properties and biomineralization and constitute a starting point to explore (Ca-Sr)CO3 particles as the next generation of bioactive materials for bone replacement. (AU) | |
| Processo FAPESP: | 17/08892-9 - Superfícies bioativas obtidas a partir de filmes Langmuir-Blodgett e biominerais |
| Beneficiário: | Ana Paula Ramos |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |
| Processo FAPESP: | 14/24249-0 - Associação de proteínas osteogênicas a biominerais e óxidos metálicos dopados com terras-raras: interação com sistemas modelo de membrana |
| Beneficiário: | Camila Bussola Tovani |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado Direto |