Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Speech Quality Assessment Over Lossy Transmission Channels Using Deep Belief Networks

Texto completo
Autor(es):
Affonso, Emmanuel T. [1] ; Rosa, Renata L. [1] ; Rodriguez, Demostenes Z. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Lavras, BR-37200000 Lavras, MG - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: IEEE SIGNAL PROCESSING LETTERS; v. 25, n. 1, p. 70-74, JAN 2018.
Citações Web of Science: 10
Resumo

Nowadays, there are several telephone services based on IP networks. However, the networks can present many disturbances, such as packet loss rate (PLR), which is one of the most impairing network factors. An impaired speech communication affects the users' quality of experience; hence, the assessment of speech quality is relevant to the telephone operators. Therefore, the determination of a methodology to predict a speech quality with a higher accuracy in telephone services is relevant. In this context, this letter introduces a novel nonintrusive speech quality classifier (SQC) model based on deep belief networks (DBN), in which the support vector machine with radial basis function kernel is the classifier applied in DBN, in order to identify four speech quality classes. A speech database was built, based on unimpaired speech files of public databases, in which different PLR models and values are applied, and a standardized intrusive method is used to calculate the index quality of each file. Results show that SQC largely overcomes the results obtained by ITU-T Recommendation P.563. Also, subjective tests are performed to validate the SQC performance, and it reached an accuracy of 95% on speech quality classification. Furthermore, a solution architecture is introduced, demonstrating the usefulness and flexibility of the proposed SQC. (AU)

Processo FAPESP: 15/25512-0 - Análise Condicional para Codificação e Reconhecimento de Sinais de Áudio e Voz
Beneficiário:Miguel Arjona Ramírez
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/24496-0 - Avaliação do serviço das operadoras de comunicações utilizando o índice de qualidade de voz
Beneficiário:Demostenes Zegarra Rodriguez
Linha de fomento: Auxílio à Pesquisa - Regular