Busca avançada
Ano de início
Entree
Conteúdo relacionado
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

ANALYZING SMOOTH AND SINGULAR DOMAIN PERTURBATIONS IN LEVEL SET METHODS

Texto completo
Autor(es):
Laurain, Antoine
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: SIAM JOURNAL ON MATHEMATICAL ANALYSIS; v. 50, n. 4, p. 4327-4370, 2018.
Citações Web of Science: 0
Resumo

In the standard level set method, the evolution of the level set function is determined by solving the Hamilton-Jacobi equation, which is derived by considering smooth boundary perturbations of the zero level set. The converse approach is to consider smooth perturbations of the level set function and to find the corresponding perturbations of the zero level set. In this paper, we show how the latter approach allows us to analyze not only smooth perturbations of the level set, but also singular perturbations in the form of topological changes. In particular, it is an appropriate framework for analyzing splitting and merging of components. In this way, we establish a link between the Gateaux derivative with respect to the level set function and the shape and topological derivatives. In the smooth case, we determine a transformation of the zero level set, defined as the flow of a vector field, which corresponds to the perturbation of the level set function. For topological changes, we study the cases of splitting or merging and creation of an island or a hole, and provide asymptotic expansions of volume and boundary integrals. (AU)

Processo FAPESP: 16/24776-6 - Otimização de forma e problemas de fronteira livre
Beneficiário:Antoine Laurain
Modalidade de apoio: Auxílio à Pesquisa - Regular