Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A method to detect data outliers from smart urban spaces via tensor analysis

Texto completo
Autor(es):
Souza, Thiago I. A. [1] ; Aquino, Andre L. L. [2] ; Gomes, Danielo G. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Ceara, Grp Redes Comp Engn Software & Sistemas GREat, Dept Engn Teleinformat, Fortaleza, Ceara - Brazil
[2] Univ Fed Alagoas UFAL, Inst Comp, Maceio, Alagoas - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE; v. 92, p. 290-301, MAR 2019.
Citações Web of Science: 1
Resumo

With the increasing amount of data available nowadays, especially in urban spaces, it has become critical extracting knowledge to get insight from all this big data. This need becomes even more important and less obvious to supply when these data have discrepant events (i.e., outliers). Here we propose a method to explore the multiway nature of urban spaces data in outliers detection which includes three stages: (i) dimensionality reduction, where we model data as a 3rd-order tensor; from this reduction, we extract a set of latent factors to obtain the best fit for the next classification step; (ii) classification of latent factors, where the latent factors from the stage (i) are used to generate instances of similar events in monitoring smart urban spaces which result in high-quality clusters from the factorization; and (iii) combining steps (i) and (ii) to generate a refined urban space pattern identification model. We analyzed a real large-scale dataset with valuable data captured and streamed by urban sensors from 4 cities: Elda and Rois (Spain), Nuremberg (Germany), and Tallinn (Estonia). Our results allow us to conclude there is a kind of cyclic time patterns of urban sensing. (C) 2018 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 15/24544-5 - Amostragem de dados em redes de sensores sem fio: integração de aplicações por intermédio da internet
Beneficiário:André Luiz Lins de Aquino
Modalidade de apoio: Auxílio à Pesquisa - Regular