Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

An Overview on Concepts Drift Learning

Texto completo
Autor(es):
Iwashita, Adriana Sayuri [1] ; Papa, Joao Paulo [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP - Brazil
[2] Sao Paulo State Univ, Dept Comp, BR-17033360 Bauru - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IEEE ACCESS; v. 7, p. 1532-1547, 2019.
Citações Web of Science: 0
Resumo

Concept drift techniques aim at learning patterns from data streams that may change over time. Although such behavior is not usually expected in controlled environments, real-world scenarios can face changes in the data, such as new classes, clusters, and features. Traditional classifiers can be easily fooled in such situations, resulting in poor performances. Common concept drift domains include recommendation systems, energy consumption, artificial intelligence systems with dynamic environment interaction, and biomedical signal analysis (e.g., neurogenerative diseases). In this paper, we surveyed several works that deal with concept drift, as well as we presented a comprehensive study of public synthetic and real datasets that can be used to cope with such a problem. In addition, we considered a review of different types of drifts and approaches to handling such changes in the data. We considered different learners employed in classification tasks and the use of drift detection mechanisms, among other characteristics. (AU)

Processo FAPESP: 14/16250-9 - Sobre a otimização de parâmetros em técnicas de aprendizado de máquina: avanços e paradigmas
Beneficiário:João Paulo Papa
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 16/19403-6 - Modelos de aprendizado baseados em energia e suas aplicações
Beneficiário:João Paulo Papa
Linha de fomento: Auxílio à Pesquisa - Regular