Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Artificial neural networks for density-functional optimizations in fermionic systems

Texto completo
Autor(es):
Custodio, Caio A. [1] ; Filletti, Erica R. [1] ; Franca, Vivian V. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] UNESP, Sao Paulo State Univ, Inst Chem, BR-14800090 Araraquara, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: SCIENTIFIC REPORTS; v. 9, FEB 13 2019.
Citações Web of Science: 1
Resumo

In this work we propose an artificial neural network functional to the ground-state energy of fermionic interacting particles in homogeneous chains described by the Hubbard model. Our neural network functional was proven to have an excellent performance: it deviates from numerically exact calculations by less than 0.15% for a vast regime of interactions and for all the regimes of filling factors and magnetizations. When compared to analytical functionals, the neural functional was found to be more precise for all the regimes of parameters, being particularly superior at the weakly interacting regime: where the analytical parametrization fails the most, -7%, against only -0.1% for the neural network. We have also applied our homogeneous functional to finite, localized impurities and harmonically confined systems within density-functional theory (DFT) methods. The results show that while our artificial neural network approach is substantially more accurate than other equivalently simple and fast DFT treatments, it has similar performance than more costly DFT calculations and other independent many-body calculations, at a fraction of the computational cost. (AU)

Processo FAPESP: 13/15982-3 - Teoria do funcional da densidade e aplicações em sólidos e átomos frios
Beneficiário:Vivian Vanessa França Henn
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores