Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Decompositions of linear spaces induced by n-linear maps

Texto completo
Autor(es):
Jesus Calderon, Antonio [1] ; Kaygorodov, Ivan [2] ; Saraiva, Paulo [3, 4, 5]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Cadiz, Dept Matemat, Cadiz - Spain
[2] Univ Fed ABC, CMCC, Santo Andre - Brazil
[3] Univ Coimbra, CeBER Ctr Business & Econ Res, Coimbra - Portugal
[4] Univ Coimbra, CMUC Ctr Math, Coimbra - Portugal
[5] Univ Coimbra, FEUC, Coimbra - Portugal
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: LINEAR & MULTILINEAR ALGEBRA; v. 67, n. 6, p. 1250-1268, JUN 3 2019.
Citações Web of Science: 2
Resumo

Let be an arbitrary linear space and an n-linear map. It is proved that, for each choice of a basis of , the n-linear map f induces a (nontrivial) decomposition as a direct sum of linear subspaces of , with respect to . It is shown that this decomposition is f-orthogonal in the sense that when , and in such a way that any is strongly f-invariant, meaning that A sufficient condition for two different decompositions of induced by an n-linear map f, with respect to two different bases of , being isomorphic is deduced. The f-simplicity - an analog of the usual simplicity in the framework of n-linear maps - of any linear subspace of a certain decomposition induced by f is characterized. Finally, an application to the structure theory of arbitrary n-ary algebras is provided. This work is a close generalization the results obtained by Calderon. (AU)

Processo FAPESP: 17/15437-6 - Estruturas n-árias split
Beneficiário:Ivan Kaygorodov
Modalidade de apoio: Bolsas no Exterior - Pesquisa