Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Epistasis-based FSA: Two versions of a novel approach for variable selection in multivariate calibration

Texto completo
Autor(es):
de Paula, Lauro C. M. [1] ; Soares, Anderson S. [1] ; Soares, Telma W. [1] ; Junior, Celso G. C. [1] ; Coelho, Clarimar J. [2] ; de Oliveira, Anselmo E. [3]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Fed Goias, Inst Informat, Goiania, Go - Brazil
[2] Pontifical Catholic Univ Goias, Sch Exact Sci & Comp, Goiania, Go - Brazil
[3] Univ Fed Goias, Inst Chem, Lab Theoret & Computat Chem, Goiania, Go - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE; v. 81, p. 213-222, MAY 2019.
Citações Web of Science: 0
Resumo

Variable Selection in large datasets is a commonly procedure in multivariate calibration, which is a field of study from chemometrics. Selecting the most informative variables becomes an important step to build mathematical models through statistical techniques in order to predict some property of interest from an analyzed sample. Recombination-based search methods such as Genetic Algorithms (GM) have been widely used as variable selection techniques to solve several optimization problems. However, previous works from literature have emphasized the schemata disruption problem caused by genetic operators. Therefore, this paper proposes two versions of an epistasis based implementation (EbFSA) as a novel approach for variable selection in multivariate calibration problems, where each version is deterministic and performs a different strategy. The use of epistasis concepts becomes important to assess the genes (variables) interdependence. Based on our experimental results, we are able to claim EbFSA can select the most informative variables and overcome some state-of-the-art algorithms. (AU)

Processo FAPESP: 08/57808-1 - Instituto Nacional de Ciências e Tecnologias Analíticas Avançadas - INCTAA
Beneficiário:Celio Pasquini
Modalidade de apoio: Auxílio à Pesquisa - Temático