Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Understanding urban landuse from the above and ground perspectives: A deep learning, multimodal solution

Texto completo
Autor(es):
Srivastava, Shivangi [1] ; Vargas-Munoz, John E. [2] ; Tuia, Devis [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Wageningen Univ & Res, Lab Geoinformat Sci & Remote Sensing, Wageningen - Netherlands
[2] Univ Estadual Campinas, Inst Comp, Lab Image Data Sci, Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: REMOTE SENSING OF ENVIRONMENT; v. 228, p. 129-143, JUL 2019.
Citações Web of Science: 2
Resumo

Landuse characterization is important for urban planning. It is traditionally performed with field surveys or manual photo interpretation, two practices that are time-consuming and labor-intensive. Therefore, we aim to automate landuse mapping at the urban-object level with a deep learning approach based on data from multiple sources (or modalities). We consider two image modalities: overhead imagery from Google Maps and ensembles of ground-based pictures (side-views) per urban-object from Google Street View (GSV). These modalities bring complementary visual information pertaining to the urban-objects. We propose an end-to-end trainable model, which uses OpenStreetMap annotations as labels. The model can accommodate a variable number of GSV pictures for the ground-based branch and can also function in the absence of ground pictures at prediction time. We test the effectiveness of our model over the area of Ile-de-France, France, and test its generalization abilities on a set of urban-objects from the city of Nantes, France. Our proposed multimodal Convolutional Neural Network achieves considerably higher-accuracies than methods that use a single image modality, making it suitable for automatic landuse map updates. Additionally, our approach could be easily scaled to multiple cities, because it is based on data sources available for many cities worldwide. (AU)

Processo FAPESP: 16/14760-5 - Anotação Interativa de Imagens de Sensoriamento Remoto
Beneficiário:John Edgar Vargas Muñoz
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 17/10086-0 - Detecção e delineamento de prédios rurais utilizando imagens de sensoriamento remoto
Beneficiário:John Edgar Vargas Muñoz
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado