Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A hierarchical state estimation and control framework for monitoring and dissolved oxygen regulation in bioprocesses

Texto completo
Autor(es):
Campani, Gilson [1, 2, 3] ; Ribeiro, Marcelo P. A. [4, 1] ; Zangirolami, Teresa C. [4, 1] ; Lima, V, Fernando
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Fed Univ Sao Carlos PPEQ UFSCar, Chem Engn Grad Program, Rodovia Washington Luis, Km 235, BR-13565905 Sao Carlos, SP - Brazil
[2] V, West Virginia Univ, Dept Chem & Biomed Engn, Morgantown, WV 26506 - USA
[3] Univ Fed Lavras, Dept Engn, BR-37200000 Lavras, MG - Brazil
[4] Univ Fed Sao Carlos, Dept Chem Engn, Rodovia Washington Luis, Km 235, BR-13565905 Sao Carlos, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Bioprocess and Biosystems Engineering; v. 42, n. 9, p. 1467-1481, SEP 2019.
Citações Web of Science: 0
Resumo

The integration of state estimation and control is a promising approach to overcome challenges related to unavailable or noisy online measurements and plant-model mismatch. Extended Kalman filter (EKF) and moving horizon estimator (MHE) are widely used methods that have complementary features. EKF provides fast estimation and MHE optimal performance. In this paper, a novel hierarchical EKF/MHE approach combined with a dynamic matrix controller (DMC), denoted as EKF/MHE-DMC, is proposed for process monitoring and dissolved oxygen control in airlift bioreactors. The approach is successfully tested in simulated cultivations of Escherichia coli for recombinant protein production, considering specific scenarios of step set point tracking, step disturbance rejection, plant-model mismatch, and measurement noise. Results also show that, given a model that describes the measured dissolved oxygen precisely, as assumed in this study for the in silico experiments, the EKF/MHE-DMC approach is able to estimate the cell, protein, substrate, and dissolved oxygen concentrations based only on the measurement of the latter, reducing the estimation error by 93.8% when compared to a benchmark case employing EKF and DMC. The general structure of the proposed EKF/MHE-DMC framework could be adapted for implementation on other relevant bioprocess systems employing their derived process models. (AU)

Processo FAPESP: 15/10291-8 - Intensificação e integração de processos de produção e purificação de proteína A de superfície de pneumococo
Beneficiário:Teresa Cristina Zangirolami
Modalidade de apoio: Auxílio à Pesquisa - Regular