Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Ion-Conductive, Viscosity-Tunable Hexagonal Boron Nitride Nanosheet Inks

Texto completo
Autor(es):
de Moraes, Ana C. M. [1] ; Hyun, Woo Jin [1] ; Seo, Jung-Woo T. [1] ; Downing, Julia R. [1] ; Lim, Jin-Myoung [1] ; Hersam, Mark C. [1, 2, 3]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 - USA
[2] Dept Med, Dept Chem, Evanston, IL 60208 - USA
[3] Dept Elect & Comp Engn, Evanston, IL 60208 - USA
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: ADVANCED FUNCTIONAL MATERIALS; v. 29, n. 39 AUG 2019.
Citações Web of Science: 0
Resumo

Liquid-phase exfoliation of layered solids holds promise for the scalable production of 2D nanosheets. When combined with suitable solvents and stabilizing polymers, the rheology of the resulting nanosheet dispersions can be tuned for a variety of additive manufacturing methods. While significant progress is made in the development of electrically conductive nanosheet inks, minimal effort is applied to ion-conductive nanosheet inks despite their central role in energy storage applications. Here, the formulation of viscosity-tunable hexagonal boron nitride (hBN) inks compatible with a wide range of printing methods that span the spectrum from low-viscosity inkjet printing to high-viscosity blade coating is demonstrated. The inks are prepared by liquid-phase exfoliation with ethyl cellulose as the polymer dispersant and stabilizer. Thermal annealing of the printed structures volatilizes the polymer, resulting in a porous microstructure and the formation of a nanoscale carbonaceous coating on the hBN nanosheets, which promotes high wettability to battery electrolytes. The final result is a printed hBN nanosheet film that possesses high ionic conductivity, chemical and thermal stability, and electrically insulating character, which are ideal characteristics for printable battery components such as separators. Indeed, lithium-ion battery cells based on printed hBN separators reveal enhanced electrochemical performance that exceeds commercial polymer separators. (AU)

Processo FAPESP: 17/15882-0 - Processamento de nanomateriais bidimensionais em fase líquida para eletrônica impressa e flexível
Beneficiário:Ana Carolina Mazarin de Moraes
Linha de fomento: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado