Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Model order reduction with Galerkin projection applied to nonlinear optimization with infeasible primal-dual interior point method

Texto completo
Autor(es):
Nigro, P. S. B. [1, 2] ; Simoes, T. [1] ; Pimenta, P. M. [3] ; Schroeder, J. [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] VirtualPYXIS Optimizat, Sao Caetano do Sul - Brazil
[2] Univ Duisburg Essen, Inst Mech, Univ Str 15, D-45141 Essen - Germany
[3] Univ Sao Paulo, Dept Struct & Geotech Engn, Polytech Sch, Sao Paulo - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING; v. 120, n. 12 AUG 2019.
Citações Web of Science: 0
Resumo

It is not new that model order reduction (MOR) methods are employed in almost all fields of engineering to reduce the processing time of complex computational simulations. At the same time, interior point methods (IPMs), a method to deal with inequality constraint problems (which is little explored in engineering), can be applied in many fields such as plasticity theory, contact mechanics, micromechanics, and topology optimization. In this work, a MOR based in Galerkin projection is coupled with the infeasible primal-dual IPM. Such research concentrates on how to develop a Galerkin projection in one field with the interior point method; the combination of both methods, coupled with Schur complement, permits to solve this MOR similar to problems without constraints, leading to new approaches to adaptive strategies. Moreover, this research develops an analysis of error from the Galerkin projection related to the primal and dual variables. Finally, this work also suggests an adaptive strategy to alternate the Galerkin projection operator, between primal and dual variable, according to the error during the processing of a problem. (AU)

Processo FAPESP: 16/03528-4 - Redução de ordem de modelos aplicada à otimização topológica
Beneficiário:Paulo Salvador Britto Nigro
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico
Processo FAPESP: 16/04460-4 - Redução de ordem de modelos aplicada à otimização topológica
Beneficiário:Eduardo Tenório Simões
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico