Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Analogue black hole spectroscopy; or, how to listen to dumb holes

Texto completo
Autor(es):
Torres, Theo [1] ; Patrick, Sam [1] ; Richartz, Mauricio [2] ; Weinfurtner, Silke [3, 1, 4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD - England
[2] Univ Fed ABC UFABC, Ctr Matemat Comp & Cognicao, BR-09210170 Santo Andre, SP - Brazil
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD - England
[4] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sy, Nottingham NG7 2RD - England
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Classical and Quantum Gravity; v. 36, n. 19 OCT 10 2019.
Citações Web of Science: 0
Resumo

Spectroscopy is a fundamental tool in science which consists in studying the response of a system as a function of frequency. Among its many applications in Physics, Biology, Chemistry and other fields, the possibility of identifying objects and structures through their emission spectra is remarkable and incredibly useful. In this paper we apply the spectroscopy idea to a numerically simulated hydrodynamical flow, with the goal of developing a new, non-invasive flow measurement technique. Our focus lies on an irrotational draining vortex, which can be seen, under specific conditions, as the analogue of a rotating black hole (historically named a dumb hole). This paper is a development of a recent experiment that suggests that irrotational vortices and rotating black holes share a common relaxation process, known as the ringdown phase. We apply techniques borrowed from black hole physics to identify vortex flows from their characteristic spectrum emitted during this ringdown phase. We believe that this technique is a new facet of the fluid-gravity analogy and constitutes a promising way to investigate experimentally vortex flows in fluids and superfluids alike. (AU)

Processo FAPESP: 13/09357-9 - Física e geometria do espaço-tempo
Beneficiário:Alberto Vazquez Saa
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/10597-8 - Modos quasinormais de um buraco negro hidrodinâmico
Beneficiário:Maurício Richartz
Modalidade de apoio: Bolsas no Exterior - Pesquisa