Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Evaluation of denoising digital breast tomosynthesis data in both projection and image domains and a study of noise model on digital breast tomosynthesis image domain

Texto completo
Autor(es):
Scarparo, Daniele Cristina [1] ; Pinheiro Salvadeo, Denis Henrique [2, 1] ; Guimaraes Pedronette, Daniel Carlos [1] ; Barufaldi, Bruno [2] ; Arnold Maidment, Andrew Douglas [2]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ, UNESP, Inst Geosci & Exact Sci, Rio Claro, SP - Brazil
[2] Univ Penn, Hosp Univ Penn, Dept Radiol, Philadelphia, PA 19104 - USA
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF MEDICAL IMAGING; v. 6, n. 3 JUL 2019.
Citações Web of Science: 0
Resumo

Digital breast tomosynthesis (DBT) is an imaging technique created to visualize 3-D mammary structures for the purpose of diagnosing breast cancer. This imaging technique is based on the principle of computed tomography. Due to the use of a dangerous ionizing radiation, the ``as low as reasonably achievable{''} (ALARA) principle should be respected, aiming at minimizing the radiation dose to obtain an adequate examination. Thus, a noise filtering method is a fundamental step to achieve the ALARA principle, as the noise level of the image increases as the radiation dose is reduced, making it difficult to analyze the image. In our work, a double denoising approach for DBT is proposed, filtering in both projection (prereconstruction) and image (postreconstruction) domains. First, in the prefiltering step, methods were used for filtering the Poisson noise. To reconstruct the DBT projections, we used the filtered backprojection algorithm. Then, in the postfiltering step, methods were used for filtering Gaussian noise. Experiments were performed on simulated data generated by open virtual clinical trials (OpenVCT) software and on a physical phantom, using several combinations of methods in each domain. Our results showed that double filtering (i.e., in both domains) is not superior to filtering in projection domain only. By investigating the possible reason to explain these results, it was found that the noise model in DBT image domain could be better modeled by a Burr distribution than a Gaussian distribution. Finally, this important contribution can open a research direction in the DBT denoising problem. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) (AU)

Processo FAPESP: 16/09714-4 - Dupla filtragem de ruído em DBT: pré e pós-reconstrução
Beneficiário:Daniele Cristina Scarparo
Linha de fomento: Bolsas no Brasil - Iniciação Científica
Processo FAPESP: 17/17811-2 - Reconstrução de Tomossíntese Mamária usando modelos markovianos não locais esparsos (SNLMRFs)
Beneficiário:Denis Henrique Pinheiro Salvadeo
Linha de fomento: Bolsas no Exterior - Pesquisa
Processo FAPESP: 17/25908-6 - Aprendizado fracamente supervisionado para análise de vídeos no domínio comprimido em tarefas de recuperação e classificação para alertas visuais
Beneficiário:João Paulo Papa
Linha de fomento: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE