Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Using Machine Learning and Multi-Element Analysis to Evaluate the Authenticity of Organic and Conventional Vegetables

Texto completo
Autor(es):
Araujo, Eloa Moura [1] ; de Lima, Marcio Dias [2, 3] ; Barbosa, Rommel [2] ; Ferracciu Alleoni, Luis Reynaldo [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Luiz de Queiroz Coll Agr ESALQ, Dept Soil Sci, Piracicaba, SP - Brazil
[2] Univ Fed Goias, Inst Informat, Goiania, Go - Brazil
[3] Inst Fed Educ Ciencia & Tecnol Goias, Goiania, Go - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: FOOD ANALYTICAL METHODS; v. 12, n. 11, p. 2542-2554, NOV 2019.
Citações Web of Science: 0
Resumo

Concern for the consumption of organic vegetables is growing throughout the world. We verified the efficiency of machine learning techniques in the classification of vegetables produced under both organic and conventional systems in the state of Pernambuco, Brazil. The contents of 25 elements (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, Ti, V, Zn) were determined in 364 vegetable samples. Principal component analysis (PCA) was displayed to get a primary distribution overview of samples. Data mining techniques such as linear discriminant analysis (LDA) were carried out to develop discrimination models based on organic vegetable samples, and feature selection (F-score and chi-squared) combined with classification algorithms (support vector machine-SVM, multilayer perceptron-MLP, and random forest-RF) was applied to these samples. LDA reached 100% in the discrimination models in tomato samples and bell pepper samples, while SVM, combined with chi-squared, outperformed the other algorithms obtaining accuracy of 100% in bell pepper samples (Capsicum annuum) and onion (Allium cepa Hysam) and 97% in tomato (Solanum Lycopersicum) samples, of which 95% was the hit rate in organic samples. For lettuce (Lactuca sativa) samples, the accuracy obtained was 92%, with a 90% hit rate of samples grown in organic systems. This high success rate highlights the potential of using elemental quantification and algorithms as support techniques in the process of authenticity and inspection of organic products. (AU)

Processo FAPESP: 15/25416-0 - Bioconcentração e cinética de dessorção de elementos potencialmente tóxicos em solos cultivados com hortaliças nos sistemas orgânico e convencional
Beneficiário:Eloá Moura Araújo
Modalidade de apoio: Bolsas no Brasil - Doutorado