Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

An ensemble based on a bi-objective evolutionary spectral algorithm for graph clustering

Texto completo
Autor(es):
Tautenhain, Camila P. S. [1] ; Nascimento, V, Maria C.
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] V, Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Sao Jose Dos Campos - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 141, MAR 1 2020.
Citações Web of Science: 0
Resumo

Graph clustering is a challenging pattern recognition problem whose goal is to identify vertex partitions with high intra-group connectivity. This paper investigates a bi-objective problem that maximizes the number of intra-cluster edges of a graph and minimizes the expected number of inter-cluster edges in a random graph with the same degree sequence as the original one. The difference between the two investigated objectives is the definition of the well-known measure of graph clustering quality: the modularity. We introduce a spectral decomposition hybridized with an evolutionary heuristic, called MOSpecG, to approach this bi-objective problem and an ensemble strategy to consolidate the solutions found by MOSpecG into a final robust partition. The results of computational experiments with real and artificial LFR networks demonstrated a significant improvement in the results and performance of the introduced method in regard to another bi-objective algorithm found in the literature. The crossover operator based on the geometric interpretation of the modularity maximization problem to match the communities of a pair of individuals was of utmost importance for the good performance of MOSpecG. Hybridizing spectral graph theory and intelligent systems allowed us to define significantly high-quality community structures. (C) 2019 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 16/22688-2 - Teoria Espectral para a Análise de Agrupamento em Grafos
Beneficiário:Camila Pereira dos Santos Tautenhain
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 15/21660-4 - Hibridização de métodos heurísticos e exatos para abordar problemas de otimização combinatória
Beneficiário:Mariá Cristina Vasconcelos Nascimento Rosset
Modalidade de apoio: Auxílio à Pesquisa - Regular