Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Advances and Perspectives in Applying Deep Learning for Drug Design and Discovery

Texto completo
Autor(es):
Lipinski, Celio F. [1] ; Maltarollo, Vinicius G. [2] ; Oliveira, Patricia R. [3] ; da Silva, Alberico B. F. [1] ; Honorio, Kathia Maria [4, 3]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, Sao Carlos, SP - Brazil
[2] Univ Fed Minas Gerais, Fac Farm, Belo Horizonte, MG - Brazil
[3] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Sao Paulo, SP - Brazil
[4] Univ Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo de Revisão
Fonte: FRONTIERS IN ROBOTICS AND AI; v. 6, NOV 5 2019.
Citações Web of Science: 0
Resumo

Discovering (or planning) a new drug candidate involves many parameters, which makes this process slow, costly, and leading to failures at the end in some cases. In the last decades, we have witnessed a revolution in the computational area (hardware, software, large-scale computing, etc.), as well as an explosion in data generation (big data), which raises the need for more sophisticated algorithms to analyze this myriad of data. In this scenario, we can highlight the potentialities of artificial intelligence (AI) or computational intelligence (CI) as a powerful tool to analyze medicinal chemistry data. According to IEEE, computational intelligence involves the theory, the design, the application, and the development of biologically and linguistically motivated computational paradigms. In addition, CI encompasses three main methodologies: neural networks (NN), fuzzy systems, and evolutionary computation. In particular, artificial neural networks have been successfully applied in medicinal chemistry studies. A branch of the NN area that has attracted a lot of attention refers to deep learning (DL) due to its generalization power and ability to extract features from data. Therefore, in this mini-review we will briefly outline the present scope, advances, and challenges related to the use of DL in drug design and discovery, describing successful studies involving quantitative structure-activity relationships (QSAR) and virtual screening (VS) of databases containing thousands of compounds. (AU)

Processo FAPESP: 16/24524-7 - Análise estrutural e estudos de modelagem molecular para ligantes de origem natural e sintética relacionados a doenças negligenciadas
Beneficiário:Kathia Maria Honorio
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 16/18840-3 - Aplicação de técnicas de transferência de aprendizagem e ontologias a modelos QSAR para regressão
Beneficiário:Patrícia Rufino Oliveira
Linha de fomento: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE