Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

An Online Method to Detect Urban Computing Outliers via Higher-Order Singular Value Decomposition

Texto completo
Autor(es):
Souza, Thiago [1] ; Aquino, Andre L. L. [2] ; Gomes, Danielo G. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Ceara, Dept Engn Teleinformat, Grp Redes Comp Engn Software & Sistemas GREat, BR-60020181 Fortaleza, Ceara - Brazil
[2] Univ Fed Alagoas UFAL, Inst Comp, BR-57072900 Maceio, Alagoas - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: SENSORS; v. 19, n. 20 OCT 2 2019.
Citações Web of Science: 0
Resumo

Here we propose an online method to explore the multiway nature of urban spaces data for outlier detection based on higher-order singular value tensor decomposition. Our proposal has two sequential steps: (i) the offline modeling step, where we model the outliers detection problem as a system; and (ii) the online modeling step, where the projection distance of each data vector is decomposed by a multidimensional method as new data arrives and an outlier statistical index is calculated. We used real data gathered and streamed by urban sensors from three cities in Finland, chosen during a continuous time interval: Helsinki, Tuusula, and Lohja. The results showed greater efficiency for the online method of detection of outliers when compared to the offline approach, in terms of accuracy between a range of 8.5% to 10% gain. We observed that online detection of outliers from real-time monitoring through the sliding window becomes a more adequate approach once it achieves better accuracy. (AU)

Processo FAPESP: 15/24544-5 - Amostragem de dados em redes de sensores sem fio: integração de aplicações por intermédio da internet
Beneficiário:André Luiz Lins de Aquino
Modalidade de apoio: Auxílio à Pesquisa - Regular