Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Modeling Hyperspectral Response of Water-Stress Induced Lettuce Plants Using Artificial Neural Networks

Texto completo
Autor(es):
Mostrar menos -
Osco, Lucas Prado [1] ; Marques Ramos, Ana Paula [2] ; Saito Moriya, Erika Akemi [3] ; Bavaresco, Lorrayne Guimaraes [4] ; de Lima, Bruna Coelho [4] ; Estrabis, Nayara [1] ; Pereira, Danilo Roberto [2] ; Creste, Jose Eduardo [2] ; Marcato Junior, Jose [1] ; Goncalves, Wesley Nunes [1] ; Imai, Nilton Nobuhiro [3] ; Li, Jonathan [5, 6] ; Liesenberg, Veraldo [7] ; de Araujo, Fabio Fernando [4]
Número total de Autores: 14
Afiliação do(s) autor(es):
[1] Univ Fed Mato Grosso do Sul, Fac Engn Architecture & Urbanism & Geog, Av Costa & Silva, BR-79070900 Campo Grande, MS - Brazil
[2] Univ Western Sao Paulo, Environm & Reg Dev, R Jose Bongiovani 700, BR-19050920 Presidente Prudente - Brazil
[3] Sao Paulo State Univ, Dept Cartog Sci, BR-19060900 Presidente Prudente - Brazil
[4] Univ Western Sao Paulo, Agron Dev, R Jose Bongiovani 700, BR-19050920 Presidente Prudente - Brazil
[5] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1 - Canada
[6] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1 - Canada
[7] Univ Estado Santa Catarina, Forest Engn Dept, BR-88040900 Florianopolis, SC - Brazil
Número total de Afiliações: 7
Tipo de documento: Artigo Científico
Fonte: REMOTE SENSING; v. 11, n. 23 DEC 1 2019.
Citações Web of Science: 3
Resumo

Modeling the hyperspectral response of vegetables is important for estimating water stress through a noninvasive approach. This article evaluates the hyperspectral response of water-stress induced lettuce (Lactuca sativa L.) using artificial neural networks (ANN). We evenly split 36 lettuce pots into three groups: control, stress, and bacteria. Hyperspectral response was measured four times, during 14 days of stress induction, with an ASD Fieldspec HandHeld spectroradiometer (325-1075 nm). Both reflectance and absorbance measurements were calculated. Different biophysical parameters were also evaluated. The performance of the ANN approach was compared against other machine learning algorithms. Our results show that the ANN approach could separate the water-stressed lettuce from the non-stressed group with up to 80% accuracy at the beginning of the experiment. Additionally, this accuracy improved at the end of the experiment, reaching an accuracy of up to 93%. Absorbance data offered better accuracy than reflectance data to model it. This study demonstrated that it is possible to detect early stages of water stress in lettuce plants with high accuracy based on an ANN approach applied to hyperspectral data. The methodology has the potential to be applied to other species and cultivars in agricultural fields. (AU)

Processo FAPESP: 13/20328-0 - Promoção de crescimento e atividades bioquímicas em plantas inoculadas com Bacillus subtilis em condições de estresse hídrico
Beneficiário:Fabio Fernando de Araujo
Modalidade de apoio: Auxílio à Pesquisa - Regular