Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Effect of Molecular Structure of Quinones and Carbon Electrode Surfaces on the Interfacial Electron Transfer Process

Texto completo
Autor(es):
Sedenho, Graziela C. [1, 2] ; De Porcellinis, Diana [2] ; Jing, Yan [3] ; Kerr, Emily [3] ; Mejia-Mendoza, Luis Martin [3] ; Vazquez-Mayagoitia, Alvaro [4] ; Aspuru-Guzik, Alan [3, 5, 6] ; Gordon, Roy G. [3] ; Crespilho, Frank N. [1, 2] ; Aziz, Michael J. [2]
Número total de Autores: 10
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Carlos Inst Chem, BR-13560970 Sao Carlos, SP - Brazil
[2] Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 - USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 - USA
[4] Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 - USA
[5] Univ Toronto, Dept Comp Sci, Toronto, ON - Canada
[6] Univ Toronto, Dept Chem, Toronto, ON - Canada
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: ACS APPLIED ENERGY MATERIALS; v. 3, n. 2, p. 1933-1943, FEB 2020.
Citações Web of Science: 0
Resumo

Quinones can undergo thermodynamically reversible proton-coupled electron transfer reactions and are being applied as electroactive compounds in aqueous organic batteries. However, the electrochemical reversibility of these compounds is affected not only by their molecular structure but also by the properties of a carbon-based electrode surface. This study combines experimental and theoretical approaches to understand this dependence. We study the electron transfer kinetics of two synthesized quinone derivatives and two commercially available ones with a glassy carbon, a highly ordered pyrolytic graphite, and a high-edge-density graphite electrode (HEDGE). The electrochemical reversibility is notably improved on the HEDGE, which shows a higher density of defects and presents oxygenated functional groups at its surface. The electron transfer kinetics are controlled by adsorbed species onto the HEDGE. Molecular dynamics simulation and quantum mechanics calculations suggest defects with oxygen-containing functional groups, such as C-O and C=O, on HEDGE surfaces drive the interaction with the functional groups of the molecules, during physisorption from van der Waals forces. The presence of sulfonic acid side groups and a greater number of aromatic rings in the molecular structure may contribute to a higher stabilization of quinone derivatives on HEDGEs. We propose that high-performance carbon-based electrodes can be obtained without catalysts for organic batteries, by the engineering of carbon-based surfaces with edge-like defects and oxygenated functional groups. (AU)

Processo FAPESP: 17/15714-0 - Bateria de fluxo redox acoplada com biocélula a combustível microbiológica
Beneficiário:Graziela Cristina Sedenho
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 13/14262-7 - Filmes nanoestruturados de materiais de interesse biológico
Beneficiário:Osvaldo Novais de Oliveira Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/22973-6 - Desenvolvimento de Biocélulas a Combustível Microbiológicas para Bioprodução e Oxidação de Etanol
Beneficiário:Graziela Cristina Sedenho
Modalidade de apoio: Bolsas no Brasil - Doutorado