Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Towards Assessing the Electricity Demand in Brazil: Data-Driven Analysis and Ensemble Learning Models

Texto completo
Autor(es):
Leme, Joao Vitor [1] ; Casaca, Wallace [1, 2] ; Colnago, Marilaine [1] ; Dias, Mauricio Araujo [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ UNESP, Dept Energy Engn, BR-19274000 Rosana, SP - Brazil
[2] Ctr Math Sci Appl Ind CeMEAI, BR-13566590 Sao Carlos, SP - Brazil
[3] Sao Paulo State Univ UNESP, Fac Sci & Technol FCT, BR-19060900 Presidente Prudente, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: ENERGIES; v. 13, n. 6 MAR 2020.
Citações Web of Science: 0
Resumo

The prediction of electricity generation is one of the most important tasks in the management of modern energy systems. Improving the assertiveness of this prediction can support government agencies, electric companies, and power suppliers in minimizing the electricity cost to the end consumer. In this study, the problem of forecasting the energy demand in the Brazilian Interconnected Power Grid was addressed, by gathering different energy-related datasets taken from public Brazilian agencies into a unified and open database, used to tune three machine learning models. In contrast to several works in the Brazilian context, which provide only annual/monthly load estimations, the learning approaches Random Forest, Gradient Boosting, and Support Vector Machines were trained and optimized as new ensemble-based predictors with parameter tuning to reach accurate daily/monthly forecasts. Moreover, a detailed and in-depth exploration of energy-related data as obtained from the Brazilian power grid is also given. As shown in the validation study, the tuned predictors were effective in producing very small forecasting errors under different evaluation scenarios. (AU)

Processo FAPESP: 18/15965-5 - Predição de demanda energética e preços em despachos hidrotérmicos: modelagem e aplicações via aprendizado de máquina
Beneficiário:João Vitor de Moraes Leme
Linha de fomento: Bolsas no Brasil - Iniciação Científica
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs