Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A CONSTRUCTIVE GLOBAL CONVERGENCE OF THE MIXED BARRIER-PENALTY METHOD FOR MATHEMATICAL OPTIMIZATION PROBLEMS

Texto completo
Autor(es):
Porfirio Suñagua [1] ; Aurelio Ribeiro Leite Oliveira [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Universidad Mayor de San Andrés. FCPN. Department of Mathematics - Bolívia
[2] University of Campinas. IMECC. Department of Applied Mathematics - Brasil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Pesquisa Operacional; v. 40, 2020-05-18.
Resumo

ABSTRACT In this paper we develop a generic mixed bi-parametric barrier-penalty method based upon barrier and penalty generic algorithms for constrained nonlinear programming problems. When the feasible set is defined by equality and inequality functional constraints, it is possible to provide an explicit barrier and penalty functions. If such case, the continuity and differentiable properties of the restrictions and objective functions could be inherited to the penalized function. The main contribution of this work is a constructive proof for the global convergence of the sequence generated by the proposed mixed method. The proof uses separately the main results of global convergence of barrier and penalty methods. Finally, for some simple nonlinear problem, we deduce explicitly the mixed barrier-penalty function and illustrate all functions defined in this work. Also we implement MATLAB code for generate iterative points for the mixed method. (AU)

Processo FAPESP: 10/06822-4 - Solução eficiente de problemas de de programação linear e quadrática de grande porte
Beneficiário:Aurelio Ribeiro Leite de Oliveira
Modalidade de apoio: Auxílio à Pesquisa - Temático