Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Exploring Two-Dimensional Materials Thermodynamic Stability via Machine Learning

Texto completo
Autor(es):
Schleder, Gabriel R. [1, 2] ; Acosta, Carlos Mera [1] ; Fazzio, Adalberto [1, 2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Fed Univ ABC UFABC, BR-09210580 Santo Andre, SP - Brazil
[2] Brazilian Nanotechnol Natl Lab LNNano CNPEM, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: ACS APPLIED MATERIALS & INTERFACES; v. 12, n. 18, p. 20149-20157, MAY 6 2020.
Citações Web of Science: 2
Resumo

The increasing interest and research on two-dimensional (2D) materials has not yet translated into a reality of diverse materials applications. To go beyond graphene and transition metal dichalcogenides for several applications, suitable candidates with desirable properties must be proposed. Here we use machine learning techniques to identify thermodynamically stable 2D materials, which is the first essential requirement for any application. According to the formation energy and energy above the convex hull, we classify materials as having low, medium, or high stability. The proposed approach enables the stability evaluation of novel 2D compounds for further detailed investigation of promising candidates, using only composition properties and structural symmetry, without the need for information about atomic positions. We demonstrate the usefulness of the model generating more than a thousand novel compounds, corroborating with DFT calculations the classification for five of these materials. To illustrate the applicability of the stable materials, we then perform a screening of electronic materials suitable for photoelectrocatalytic water splitting, identifying the potential candidate Sn2SeTe generated by our model, and also PbTe, both not yet reported for this application. (AU)

Processo FAPESP: 18/11856-7 - Efeitos induzidos por interfaces em materiais quânticos
Beneficiário:Carlos Augusto Mera Acosta
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 17/18139-6 - Machine learning e Ciência de Materiais: descoberta e design de materiais 2D
Beneficiário:Gabriel Ravanhani Schleder
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 17/02317-2 - Interfaces em materiais: propriedades eletrônicas, magnéticas, estruturais e de transporte
Beneficiário:Adalberto Fazzio
Modalidade de apoio: Auxílio à Pesquisa - Temático