Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Spectral Signatures of Chromospheric Condensation in a Major Solar Flare

Texto completo
Autor(es):
Graham, David R. [1] ; Cauzzi, Gianna [2, 3] ; Zangrilli, Luca [4] ; Kowalski, Adam [3, 5, 6] ; Simoes, Paulo [7, 8] ; Allied, Joel [9]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Bay Area Environm Res Inst, Moffett Field, CA 94035 - USA
[2] INAF Osservatorio Astrofis Arcetri, I-50125 Florence - Italy
[3] Univ Colorado, Natl Solar Observ, 3665 Discovery Dr, Boulder, CO 80303 - USA
[4] INAF Osservatorio Astrofis Torino, I-10025 Pino Torinese - Italy
[5] Univ Colorado, Dept Astrophys & Planetary Sci, 2000 Colorado Ave, Boulder, CO 80305 - USA
[6] Univ Colorado, Lab Atmospher & Space Phys, 3665 Discovery Dr, Boulder, CO 80303 - USA
[7] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow G12 8QQ, Lanark - Scotland
[8] Univ Presbiteriana, Ctr Radio Astron & Astrofis Mackenzie, Escola Engn, Mackenzie - Brazil
[9] NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 - USA
Número total de Afiliações: 9
Tipo de documento: Artigo Científico
Fonte: ASTROPHYSICAL JOURNAL; v. 895, n. 1 MAY 2020.
Citações Web of Science: 0
Resumo

We study the evolution of chromospheric line and continuum emission during the impulsive phase of the X-class SOL2014-09-10T17:45 solar flare. We extend previous analyses of this flare to multiple chromospheric lines of Fe i, Fe ii, Mg ii, C i, and Si ii observed with the Interface Region Imaging Spectrograph, combined with radiative-hydrodynamical (RHD) modeling. For multiple flaring kernels, the lines all show a rapidly evolving double-component structure: an enhanced emission component at rest, and a broad, highly redshifted component of comparable intensity. The redshifted components migrate from 25 to 50 km s(-1) toward the rest wavelength within similar to 30 s. Using Fermi hard X-ray observations, we derive the parameters of an accelerated electron beam impacting the dense chromosphere, using them to drive an RHD simulation with the RADYN code. As in Kowalski et al. (2017), our simulations show that the most energetic electrons penetrate into the deep chromosphere, heating it to T similar to 10,000 K, while the bulk of the electrons dissipate their energy higher, driving an explosive evaporation, and its counterpart condensation-a very dense (n(e) similar to 2 x 10(14) cm(-3)), thin layer (30-40 km thickness), heated to 8-12,000 K, moving toward the stationary chromosphere at up to 50 km s(-1). The synthetic Fe ii 2814.45 A profiles closely resemble the observational data, including a continuum enhancement, and both a stationary and a highly redshifted component, rapidly moving toward the rest wavelength. Importantly, the absolute continuum intensity, ratio of component intensities, relative time of appearance, and redshift amplitude are sensitive to the model input parameters, showing great potential as diagnostics. (AU)

Processo FAPESP: 13/24155-3 - Diagnóstico de explosões solares em inédito intervalo espectral, de micro-ondas até frequências THz: desafios para interpretação (FLAT)
Beneficiário:Carlos Guillermo Giménez de Castro
Modalidade de apoio: Auxílio à Pesquisa - Temático