Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Channel capacity in brain-computer interfaces

Texto completo
Autor(es):
da Silva Costa, Thiago Bulhoes [1, 2] ; Suarez Uribe, Luisa Fernanda [1, 2] ; de Carvalho, Sarah Negreiros [1, 3] ; Soriano, Diogo Coutinho [1, 4] ; Castellano, Gabriela [1, 5] ; Suyama, Ricardo [1, 6] ; Attux, Romis [1, 2] ; Panazio, Cristiano [7]
Número total de Autores: 8
Afiliação do(s) autor(es):
[1] Brazilian Inst Neurosci & Neurotechnol BRAINN, Campinas, SP - Brazil
[2] Univ Campinas UNICAMP, FEEC, Campinas, SP - Brazil
[3] Fed Univ Ouro Preto UFOP, ICEA, Joao Monlevade, MG - Brazil
[4] Fed Univ ABC UFABC, CECS, Sao Bernardo Do Campo, SP - Brazil
[5] Univ Campinas UNICAMP, IFGW, Campinas, SP - Brazil
[6] Fed Univ ABC UFABC, CECS, Santo Andre, SP - Brazil
[7] Univ Sao Paulo, Poli USP, Sao Paulo, SP - Brazil
Número total de Afiliações: 7
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF NEURAL ENGINEERING; v. 17, n. 1 FEB 2020.
Citações Web of Science: 1
Resumo

Objective. Adapted from the concept of channel capacity, the information transfer rate (ITR) has been widely used to evaluate the performance of a brain-computer interface (BCI). However, its traditional formula considers the model of a discrete memoryless channel in which the transition matrix presents very particular symmetries. As an alternative to compute the ITR, this work indicates a more general closed-form expression-also based on that channel model, but with less restrictive assumptions-and, with the aid of a selection heuristic based on a wrapper algorithm, extends such formula to detect classes that deteriorate the operation of a BCI system. Approach. The benchmark is a steady-state visually evoked potential (SSVEP)-based BCI dataset with 40 frequencies/classes, in which two scenarios are tested: (1) our proposed formula is used and the classes are gradually evaluated in the order of the class labels provided with the dataset; and (2) the same formula is used but with the classes evaluated progressively by a wrapper algorithm. In both scenarios, the canonical correlation analysis (CCA) is the tool to detect SSVEPs. Main results. Before and after class selection using this alternative ITR, the average capacity among all subjects goes from 3.71 +/- 1.68 to 4.79 +/- 0.70 bits per symbol, with p-value<0.01, and, for a supposedly BCI-illiterate subject, her/his capacity goes from 1.53 to 3.90 bits per symbol. Significance. Besides indicating a consistent formula to compute ITR, this work provides an efficient method to perform channel assessment in the context of a BCI experiment and argues that such method can be used to study BCI illiteracy. (AU)

Processo FAPESP: 13/07559-3 - Instituto Brasileiro de Neurociência e Neurotecnologia - BRAINN
Beneficiário:Fernando Cendes
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 19/09512-0 - Análise não linear da conectividade funcional dinâmica via quantificação de recorrência e sua aplicação em interfaces cérebro-computador
Beneficiário:Diogo Coutinho Soriano
Modalidade de apoio: Bolsas no Exterior - Pesquisa