Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Estimating the thermal insulating performance of multi-component refractory ceramic systems based on a machine learning surrogate model framework

Texto completo
Autor(es):
Santos, D. P. [1, 2] ; Pelissari, P. I. B. G. B. [1, 2] ; de Mello, R. F. [3] ; Pandolfelli, V. C. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Mat Engn, BR-13565905 Sao Paulo - Brazil
[2] HiTemp Technol Solut, BR-13560251 Sao Paulo - Brazil
[3] Univ Sao Paulo, Inst Math & Comp Sci, Dept Comp Sci, BR-13566590 Sao Paulo - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Applied Physics; v. 127, n. 21 JUN 7 2020.
Citações Web of Science: 0
Resumo

Predicting the insulating thermal behavior of a multi-component refractory ceramic system could be a difficult task, which can be tackled using the finite element (FE) method to solve the partial differential equations of the heat transfer problem, thus calculating the temperature profiles throughout the system in any given period. Nevertheless, using FE can still be very time-consuming when analyzing the thermal performance of insulating systems in some scenarios. This paper proposes a framework based on a machine learning surrogate model to significantly reduce the required computation time for estimating the thermal performance of several multi-component insulating systems. Based on an electric resistance furnace case study, the framework estimated the feasibility and the final temperature of nearly 1.9 x 10 5 insulating candidates' arrangements with reasonable accuracy by simulating only an initial sample of 2.8 % of them via FE. The framework accuracy was evaluated by varying the initial sample size from approximate to 0.9 % to 8 % of total combinations, indicating that 3 %- 5 % is the optimal range in the case study. Finally, the proposed framework was compared to the evolutionary screening procedure, a previously proposed method for selecting insulating materials for furnace linings, from which it was concluded that the machine learning framework provides better control over the number of required FE simulations, provides faster optimization of its hyperparameters, and enables the designers to estimate the thermal performance of the entire search space with small errors on temperature prediction. (AU)

Processo FAPESP: 17/16044-8 - Desenvolvimento de uma ferramenta de otimização multicritério de revestimentos cerâmicos refratários para o isolamento térmico de fornos resistivos de alta temperatura
Beneficiário:Pedro Ivo Batistel Galiote Brossi Pelissari
Modalidade de apoio: Auxílio à Pesquisa - Pesquisa Inovativa em Pequenas Empresas - PIPE