Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A Sensitive Stylistic Approach to Identify Fake News on Social Networking

Texto completo
Autor(es):
de Oliveira, Nicollas R. [1] ; Medeiros, Dianne S. V. [1] ; Mattos, Diogo M. F. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Fluminense UFF, Grad Program Elect & Telecommun Engn, BR-24230340 Niteroi, RJ - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: IEEE SIGNAL PROCESSING LETTERS; v. 27, p. 1250-1254, 2020.
Citações Web of Science: 0
Resumo

Human inefficiency to distinguish between true and false facts poses fake news as a threat to logical truth, which deteriorates democracy, journalism, and credibility in governmental institutions. In this letter, we propose a computational-stylistic analysis based on natural language processing, efficiently applying machine learning algorithms to detect fake news in texts extracted from social media. The analysis considers news from Twitter, from which approximately 33,000 tweets were collected, assorted between real and proven false. In assessing the quality of detection, 86% accuracy, and 94% precision stand out even employing a dimensional reduction to one-sixth of the number of original features. Our approach introduces a minimum overhead, while it has the potential of providing a high confidence index on discriminating fake from real news. (AU)

Processo FAPESP: 18/23062-5 - MEGACHAIN: Blockchain para Integração, Privacidade e Auditoria de Sistemas de Megacidades
Beneficiário:Célio Vinicius Neves de Albuquerque
Linha de fomento: Auxílio à Pesquisa - Regular