Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Mixed Halide Lead-free Double Perovskite Alloys for Band Gap Engineering

Texto completo
Autor(es):
Silveira, V, Julian F. R. ; Da Silva, Juarez L. F. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Silveira, Julian F. R., V, Univ Sao Paulo, Sao Carlos Inst Chem, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: ACS APPLIED ENERGY MATERIALS; v. 3, n. 8, p. 7364-7371, AUG 24 2020.
Citações Web of Science: 0
Resumo

Lead-free double perovskites are currently among some of the most researched materials for solar cell applications, with the aim to identify promising perovskite-like materials to improve stability and reduce toxicity observed in lead-based perovskites. In this work, we present a theoretical investigation based on density functional theory calculations within semilocal and hybrid exchange-correlation functionals of the structural, energetic, and electronic properties of the inorganic Cs(8)Ag(4)Bi(4)Q(m)Q(n)' double perovskites, where m + n = 24 and Q and Q' = Cl, Br, and I. Based on the combination of different halide species and compositions within the crystal structures, we identified a balance between the stability driven by the smaller halide species in Cs(8)Ag(4)Bi(4)Q(m)Q(n)' compounds and a higher power conversion efficiency (PCE) driven by the larger halide species. From that, we highlighted the perovskite Cs8Ag4Bi4Cl12I12 as an example that was shown to be as stable as the already synthesized Cs2AgBiBr6 according to our metrics, but with a PCE of almost 10%, i.e., 5 times greater than the PCE of the latter. Therefore, our findings can provide a path for further experimental studies, with the aim to validate our results and identify potential lead-free perovskites for solar cell applications via mixed halide alloying. (AU)

Processo FAPESP: 18/21401-7 - EMU concedido no processo 2017/11631-2: cluster computacional de alto desempenho - ENIAC
Beneficiário:Juarez Lopes Ferreira da Silva
Modalidade de apoio: Auxílio à Pesquisa - Programa Equipamentos Multiusuários
Processo FAPESP: 17/11631-2 - CINE: desenvolvimento computacional de materiais utilizando simulações atomísticas, meso-escala, multi-física e inteligência artificial para aplicações energéticas
Beneficiário:Juarez Lopes Ferreira da Silva
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia