Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Individual tree detection and species classification of Amazonian palms using UAV images and deep learning

Texto completo
Autor(es):
Ferreira, Matheus Pinheiro [1] ; Alves de Almeida, Danilo Roberti [2] ; Papa, Daniel de Almeida [3] ; Silva Minervino, Juliano Baldez [4] ; Pessoa Veras, Hudson Franklin [5] ; Formighieri, Arthur [4] ; Nascimento Santos, Caio Alexandre [3] ; Dantas Ferreira, Marcio Aurelio [6] ; Figueiredo, Evandro Orfano [3] ; Linhares Ferreira, Evandro Jose [7]
Número total de Autores: 10
Afiliação do(s) autor(es):
[1] Mil Inst Engn IME, Cartog Engn Sect, Praca Gen Tiburcio 80, BR-22290270 Rio De Janeiro, RJ - Brazil
[2] Univ Sao Paulo, Forest Sci Dept, Av Padua Dias 11, Piracicaba, SP - Brazil
[3] Embrapa Acre, Rodovia BR 364, Km 14, BR-69900056 Rio Branco, AC - Brazil
[4] Univ Fed Acre, Rodovia BR 364, Km 04 Dist Ind, BR-69920900 Rio Branco, AC - Brazil
[5] Fed Univ Parana UFPR, Dept Forestry, Pref Lothario Meissner Ave 900, BR-80210170 Curitiba, Parana - Brazil
[6] Technol Fdn Acre State, BR-69920202 Rio Branco, AC - Brazil
[7] Natl Inst Amazonian Res INPA, Estr Dias Martins 3868, BR-69917560 Rio Branco, AC - Brazil
Número total de Afiliações: 7
Tipo de documento: Artigo Científico
Fonte: FOREST ECOLOGY AND MANAGEMENT; v. 475, NOV 1 2020.
Citações Web of Science: 1
Resumo

Information regarding the spatial distribution of palm trees in tropical forests is crucial for commercial exploitation and management. However, spatially continuous knowledge of palms occurrence is scarce and difficult to obtain with conventional approaches such as field inventories. Here, we developed a new method to map Amazonian palm species at the individual tree crown (ITC) level using RGB images acquired by a low-cost unmanned aerial vehicle (UAV). Our approach is based on morphological operations performed in the score maps of palm species derived from a fully convolutional neural network model. We first constructed a labeled dataset by dividing the study area (135 ha within an old-growth Amazon forest) into 28 plots of 250 m x 150 m. Then, we manually outlined all palm trees seen in RGB images with 4 cm pixels. We identified three palm species: Attalea butyracea, Euterpe precatoria and Iriartea deltoidea. We randomly selected 22 plots (80%) for training and six plots (20%) for testing. We changed the plots for training and testing to evaluate the variability in the classification accuracy and assess model generalization. Our method outperformed the average producer's accuracy of conventional patch-wise semantic segmentation (CSS) in 4.7%. Moreover, our method correctly identified, on average, 34.7 percentage points more ITCs than CSS, which tended to merge trees that are close to each other. The producer's accuracy of A. butyracea, E. precatoria and I. deltoidea was 78.6 +/- 5.5%, 98.6 +/- 1.4% and 96.6 +/- 3.4%, respectively. Fortunately, one of the most exploited and commercialized palm species in the Amazon (E. precatoria, a.k.a, Acai) was mapped with the highest classification accuracy. Maps of E. precatoria derived from low-cost UAV systems can support management projects and community-based forest monitoring programs in the Amazon. (AU)

Processo FAPESP: 18/21338-3 - Monitoramento da restauração de paisagens florestais usando veículo aéreo não tripulado com sensoriamento remoto Lidar e hiperespectral
Beneficiário:Danilo Roberti Alves de Almeida
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 19/14697-0 - Monitoramento da demografia e diversidade de florestas em processo de restauração usando um sistema drone-lidar-hiperespectral
Beneficiário:Danilo Roberti Alves de Almeida
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado