Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Chemical bonding in metallic glasses from machine learning and crystal orbital Hamilton population

Texto completo
Autor(es):
Ferreira, Ary R. [1]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos UFScar, Dept Phys, BR-13565905 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: PHYSICAL REVIEW MATERIALS; v. 4, n. 11 NOV 9 2020.
Citações Web of Science: 0
Resumo

The chemistry (composition and bonding information) of metallic glasses (MGs) is at least as important as structural topology for understanding their properties and production/processing peculiarities. This paper reports a machine learning (ML)-based approach that brings an unprecedented ``big picture{''} view of chemical bond strengths in MGs of a prototypical alloy system. The connection between electronic structure and chemical bonding is given by crystal orbital Hamilton population (COHP) analysis; within the framework of density functional theory (DFT). The stated comprehensive overview is made possible through a combination of: efficient quantitative estimate of bond strengths supplied by COHP analysis, representative statistics regarding structure in terms of atomic configurations achieved with classical molecular dynamics simulations, and the smooth overlap of atomic positions (SOAP) descriptor. The study is supplemented by an application of that ML model under the scope of mechanical loading in which the resulting overview of chemical bond strengths revealed a chemical/structural heterogeneity that is in line with the tendency to bond exchange verified for atomic local environments. The encouraging results pave the way towards alternative approaches applicable in plenty of other contexts in which atom categorization (from the perspective of chemical bonds) plays a key role. (AU)

Processo FAPESP: 16/12319-0 - Uso de simulações computacionais de parâmetros espectrais de RMN como suporte à caracterização de vidros metálicos
Beneficiário:Ary Rodrigues Ferreira Junior
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado